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Improving Cache Performance in Dynamic Applications throughData and Computation Reorganization at Run Time�Chen Ding Ken Kennedyfcding, keng@cs.rice.eduComputer Science DepartmentRice UniversityHouston, TX 77005AbstractWith the rapid improvement of processor speed, perfor-mance of the memory hierarchy has become the princi-pal bottleneck for most applications. A number of com-piler transformations have been developed to improvedata reuse in cache and registers, thus reducing the to-tal number of direct memory accesses in a program.Until now, however, most data reuse transformationshave been static|applied only at compile time. As aresult, these transformations cannot be used to optimizeirregular and dynamic applications, in which the datalayout and data access patterns remain unknown untilrun time and may even change during the computation.In this paper, we explore ways to achieve better datareuse in irregular and dynamic applications by build-ing on the inspector-executor method used by Saltz forrun-time parallelization. In particular, we present andevaluate a dynamic approach for improving both com-putation and data locality in irregular programs. Ourresults demonstrate that run-time program transforma-tions can substantially improve computation and datalocality and, despite the complexity and cost involved,a compiler can automate such transformations, elimi-nating much of the associated run-time overhead.1 IntroductionAs modern single-chip processors have increased therate at which they execute instructions, performanceof the memory hierarchy has become the bottleneck formost applications. In the past, the principal challengein memory hierarchy management has been overcom-ing latency, but blocking and prefetching have amelio-�Accepted for publication in ACM SIGPLAN PLDI'99.

rated that problem signi�cantly. As exposed memorylatency is reduced, bandwidth has become the domi-nant performance constraint because limited memorybandwidth bounds the rate of data transfer betweenmemory and CPU regardless of the speed of proces-sors or the latency of memory access. Our experimentson the SGI Origin 2000 have indicated that the band-width needed to achieve peak performance levels onmost scienti�c applications on large data sets is a fac-tor of two or more greater than that provided by thememory system[11]. As a result, program performanceis now limited by its e�ective bandwidth, that is, therate at which operands of a computation are transferredbetween CPU and memory.Currently, the principal software mechanism for im-proving e�ective bandwidth in a program, as well asreducing overall memory latency, is increasing tempo-ral and spatial reuse through program transformation.Temporal reuse occurs when multiple accesses to thesame data structure use a bu�ered copy in cache orregisters, eliminating the need for repeated accesses tomain memory. While temporal reuse reduces the fre-quency of memory accesses, spatial reuse improves thee�ciency of each memory access by grouping accesseson the same cache line. Since most current machinestransfer one cache line at a time from memory, thisgrouping amortizes the cost of the bandwidth over morereferences. The combination of temporal and spatialreuse can minimize the number of transferred cachelines, i.e. the total memory bandwidth requirement ofthe program.A substantive portion of the research on compilermemory management has focused on increasing tem-poral and spatial reuse in regular applications. Cacheand register blocking techniques group computations ondata tiles to enhance temporal reuse[5, 22]. Various loopreordering schemes seek to arrange stride-one data ac-cess to maximize spatial reuse[1, 12, 17]. Data transfor-mations can often be used to e�ect spatial reuse whencomputation transformation is insu�cient or illegal[8].
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None of these strategies, however, works well withdynamic and irregular computations because the unpre-dictable nature of data reuse prevents e�ective staticanalysis. An example is molecular dynamics simula-tion, which models the movement of particles in somephysical domain (e.g. a 3-D space). The distributionof molecules remains unknown until run time, and thedistribution itself changes during the computation. An-other class of dynamic applications employ sparse linearalgebra, where the non-zero entries in a sparse matrixchanges dynamically. In both types of computation, itis impossible to enhance dynamic temporal reuse andirregular spatial reuse with static transformations.The alternative to static methods is to apply dy-namic reorganization at run time. Such strategies havebeen routinely employed to enhance the e�ciency ofparallel computations using the so-called \inspector-executor" method pioneered by Saltz and his colleagues.The underlying strategy is to insert code into the objectprogram that reorganizes the computation or data lay-out once the structure of that data is known. The costof this reorganization is then amortized over numeroustime steps of the computation[10].In this paper we describe two run-time transforma-tions that improve the memory hierarchy performanceof irregular computations like molecular dynamics sim-ulation, and we present experimental evidence of theire�ectiveness. The locality grouping transformation re-orders computation to improve dynamic temporal reuse.Dynamic data packing, on the other hand, reorganizesdata to achieve better spatial locality. In addition tothese two transformations, we discuss a static data trans-formation, data regrouping, that is necessary to opti-mize global static data layout for large dynamic pro-grams.A substantial portion of this paper is devoted tothe compiler support for dynamic data packing. Trans-forming data at run time carries a signi�cant overheadbecause of the need to redirect accesses from the oldlayout to the transformed one. However, most of thisoverhead can be eliminated by compiler optimizations.This paper describes an implementation of packing andevaluates the associated optimizations.The remainder of the paper is organized as follows.Section 2 describes locality grouping and dynamic datapacking, with a simulation study on their e�ectivenesson various cache con�gurations. Section 3 presents thecompiler support for dynamic data packing, includingoptimizations that eliminate most of its run-time over-head. Section 4 briey discusses data regrouping. InSection 5, the three transformations are evaluated onthe SGI Origin2000 using three well-known benchmarksand a full application. Related work is discussed inSection 6. Finally, Section 7 summarizes the originalcontributions of this paper.

2 Run-time Computation and Data TransformationsThis section describes two run-time transformations: lo-cality grouping, which reorders data access to improvedynamic temporal reuse; and dynamic data packing,which reorganizes data layout for better run-time spa-tial reuse. Both transformations are then evaluated,individually and combined, through various access se-quences on simulated caches.2.1 Locality GroupingThe e�ectiveness of cache is predicated on the existenceof locality and good computation structure exploitingthat locality. In a dynamic application such as molec-ular dynamics simulation, the locality comes directlyfrom its physical model in which a particle interactsonly with its neighbors. A set of neighboring particlesforms a locality group in which most interactions occurwithin the group. In most programs, however, localitygroups are not well separated. Although schemes suchas domain partitioning exist for explicitly extracting lo-cality, they are very time-consuming and may thereforenot be cost-e�ective in improving cache performance ofa sequential execution. To pursue a better tradeo�, thissection proposes the most e�cient, yet also very pow-erful reordering scheme, locality grouping.Given a sequence of objects and their interactions,locality grouping goes through the list of objects andclusters all interactions involving each object in the list.Figure 1 shows an example of locality grouping. Graph(a) draws the example objects and their interactionsand Graph (b) is an example enumeration of all inter-actions. Assuming a cache of 3 objects, the examplesequence incurs 10 misses. Locality grouping reordersthe access sequence so that all interactions with each ob-ject are clustered. The new sequence then starts withall interactions on object a, then b, until the last objectg. The locality-grouped access sequence incurs only 6misses.
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produces the locality-grouped sequence. Locality group-ing also applies to interactions in tuples involving morethan a pair of objects. A compiler can automate lo-cality grouping by simply inserting a call to a sortingsubroutine. The legality and pro�tability of this trans-formation can be determined either by compiler analy-sis or user directives, similar to the compiler support torun-time data transformations, which we will show indetail in the next section.We evaluated locality grouping on a data set frommesh, a structural simulation. The data set is a list ofedges of a mesh structure of some physical object suchas an airplane. Each edge connects two nodes of themesh. This speci�c data set, provided by the Chaosgroup at University of Maryland, has 10K nodes and60K edges. We simulate only the data accesses on afully associative cache in order to isolate the inherentcache reuse behavior from other factors. The two cacheswe simulate are 2K and 4K bytes in size and they useunit-length cache lines.Table 1 gives the miss rate ofmesh with and withoutlocality grouping. Locality grouping eliminates 96.9%of cache misses in the 2K cache and 99.4% in the 4Kcache. The miss rates after locality grouping are ex-tremely low, especially in the 4K cache (0.37%). Fur-ther decreasing miss rate with more powerful reorderingschemes in this case is unlikely to be cost-e�ective if theoverhead of extra execution time does not out-weigh theadditional gain. Original After locality groupingmiss rate 2K cache 4K 2K cache 4Kof mesh 93.2% 63.5% 2.93% 0.37%Table 1: E�ect of Locality Grouping2.2 Dynamic Data PackingCorrect data placement is critical to e�ective use ofavailable memory bandwidth. Placement of data ele-ments in memory in the order in which they are accessedshould improve spatial reuse. In regular computations,this placement can be done at compile time. However,in an irregular or adaptive computation, the order ofdata access is not known until run time and that or-der may change dynamically. Dynamic data packing isa run-time optimization that groups data accessed atclose intervals in the program into the same cache line.For example, if two objects are always accessed consec-utively in a computation, placing them adjacent to eachother increases bandwidth utilization by increasing thenumber of bytes on each line that are used before theline is evicted.Figure 2 will be used as an example throughout thissection to illustrate the packing algorithms and theire�ects. Figure 2(a) shows an example access sequence.

The objects are numbered by their location in memory.In the sequence, the �rst object interacts with the 600thand 800th object and subsequently the latter two ob-jects interact with each other. Assume that the cachesize is limited and the access to the last pair of the 600thand 800th objects cannot reuse the data loaded at thebeginning. Since each of these three objects are on dif-ferent cache lines, the total number of cache misses is5. A transformed data layout is shown in Figure 2(b),where the three objects are relocated at positions 0 to2. Assuming a cache line can hold three objects, thetransformed layout only incurs two cache misses, a sig-ni�cant reduction from the previous �gure of 5 misses.
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5 cache misses 2 cache missesFigure 2: Example of Data PackingThe rest of this section presents three packing algo-rithms and a comparison study of their performance ondi�erent types of run-time inputs.Packing AlgorithmsThe simplest packing strategy is to place data in theorder they �rst appear in the access sequence. We callthis strategy consecutive packing or �rst-touch packing.The packing algorithm is as follows. To ensure thateach object has one and only one location in the newstorage, the algorithm uses a tag for each object to labelwhether the object has been packed or not.initializing each tag to be false (not packed)for each object i in the access sequenceif i has not been packedplace i in the next available locationmark its tag to be true (packed)end ifend iterationplace the remaining unpacked objectsConsecutive packing carries a minimal time and spaceoverhead because it traverses the access sequence andobject array once and only once. For access sequencesin which each object is accessed at most once, consec-utive packing yields optimal cache line utilization be-cause the objects are visited in stride-one fashion dur-ing the computation. Achieving an optimal packing inthe presence of repeated accesses, on the other hand, isNP-complete, as this problem can be reduced to the G-partition problem[16] following a similar reduction byThabit[20]. The packing algorithms presented in thissection are therefore based on heuristics.
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One shortcoming of consecutive packing is that itdoes not take into account the di�erent reuse patternsof di�erent objects. Group packing attempts to over-come this problem by classifying objects according totheir reuse pattern and applying consecutive packingwithin each group. In the example in Figure 2(b), the�rst object is not reused later but the 600th and 800thobject are reused after a similar interval. Based on reusepatterns, group packing puts the latter two objects intoa new group and packs them separately from the �rstobject. If we assume a cache line of two objects, con-secutive packing fails to put the latter two objects intoone cache line but grouping packing succeeds. As a re-sult, consecutive packing yields four misses while grouppacking incurs only three.The key challenge for group packing is how to char-acterize a reuse pattern. The simplest approach is to usethe average reappearance distance of each object in theaccess sequence, which can be e�ciently computed ina single pass. More complex characterizations of reusepatterns may be desirable if a user or compiler has addi-tional knowledge on how objects are reused. However,more complex reuse patterns may incur higher compu-tation costs at run time.The separation of objects based on reuse patterns isnot always pro�table. It is possible that two objectswith the same reuse pattern are so far apart in the ac-cess sequence so that they can never be in cache simul-taneously. In this case, we do not want to pack themtogether. To solve this problem, we need to consider thedistance between objects in the access sequence as wellas their reuse pattern. This consideration motivates thethird packing algorithm, consecutive-group packing.Consecutive-group packing groups objects based onthe position of their �rst appearance. For example, it�rst groups the objects appeared in the �rst N positionsin the access sequence, then the objects in the next Npositions, and so on until the end of the access sequence.The parameter N is the consecutive range. Within eachrange group, objects can then be reorganized with grouppacking.The length of the consecutive range determines thebalance between exploiting closeness and exploiting reusepatterns. When the consecutive range is 1, data pack-ing is the same as consecutive packing. When the rangeis the full sequence, the packing is the same as groupingpacking. In this sense, these three packing algorithmsare actually one single packing heuristic with di�erentparameters.Evaluation of Packing AlgorithmsWe evaluated all three packing algorithms on mesh andanother input access stream that we extracted frommoldyn, a molecular dynamics simulationprogram. TheMoldyn program initializes approximately 8K molecules

with random positions. As before, we simulated onlythe data access on a fully associative cache.The group packing classi�es objects by their aver-age reappearance distance; it is parameterized by itsdistance granularity. A granularity of 1000 means thatobjects whose average reappearance distance fall in each1000-element range are grouped together. Consecutive-group packing has two parameters: the �rst is the con-secutive range, and the second is the grouping packingalgorithm used inside each range.
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consecutive−group(1K, group(150))Figure 3: moldyn and mesh, 4K cacheThe two graphs in Figure 3 show the e�ect of pack-ing on the moldyn and mesh data sets. The left graphdraws the miss rate on a 4K-sized cache for di�erentcache line sizes from 1 to 16 molecules long. The missrate of the original data layout, shown by the �rst barof each cluster, increases dramatically as cache lines getlonger. The cache with 16-molecule cache lines incurs 6times the number of misses of the unit-line cache. Sincethe total amount of memory transfer is the number ofmisses times cache line size, the 16-molecule cache linesresult in 96 times the memory transfer volume of theunit cache line case|it is wasting 99% of the availablememory bandwidth! Even 2-molecule cache lines wasteover 80% of available memory bandwidth. After variouspacking algorithms are applied, however, the miss ratesdrop signi�cantly, as indicated in the remaining fourbars in each cluster. Consecutive packing reduces themiss rate by factors ranging from 7.33 to over 26. Be-cause of the absence of consistent reuse pattern, groupand consecutive-group packing do not perform as wellas consecutive packing but nevertheless reduce the missrate by a similar amount.The original access sequence of the mesh data sethas a cyclic reuse pattern and a very high miss rate; see,for example, 64% on the 4K cache, shown in the right-hand graph of Figure 3. Interestingly, the cyclic dataaccess pattern scales well on longer cache lines, exceptat the size of 8. Data packing, however, evenly reducesmiss rate on all cache line sizes, including the size of 8.At that size, packing improves from 29% to 46%. Onother sizes, consecutive packing and group packing yieldslightly higher miss rates than the original data layout.One con�guration, consecutive-group(1K,group(150)),is found to be the best of all; it achieves the lowest missrate in all cases, although it is only marginally better on
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sizes other than 8. It should be noted that the result ofconsecutive-group packing is very close to the ideal casewhere the miss rate halves when cache line size doubles.As shown in the next section, dynamic packing, whencombined with locality grouping, can reduce the missrate to as low as 0.02%.We also simulated 2K-sized caches and observed sim-ilar results. Consecutive packing reduces the miss rateof moldyn by 27% to a factor of 3.2. Consecutive-grouppacking improves mesh by 1% to 39%.2.3 Combining Computation and Data TransformationWhen we combine locality grouping with data pack-ing on mesh (moldyn was already in locality-groupedform), the improvement is far greater than when theyare individually applied. Figure 4 shows miss rates ofmesh after locality grouping. On a 4K cache, the missrate on a unit-line cache is reduced from 64% to 0.37%after locality grouping. On longer cache-line sizes, datapacking further reduces the miss rate by 15% to a factorof over 6. On the 16-molecule cache line case, the com-bined e�ect is a reduction from a miss rate of 4.52%(shown in Figure 3) to 0.02%, a factor of 226. On a2K cache with 16-molecule cache lines, the combinedtransformations reduce miss rate from 7.48% to 0.25%,a factor of 30. Although not shown in the graph, groupand consecutive-group packing do not perform as wellas consecutive packing.
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locality grouping + packingFigure 4: Mesh after Locality GroupingIn summary, the simulation results show that lo-cality grouping e�ectively extracts computation local-ity, and data packing signi�cantly improves data lo-cality. The e�ect of data packing becomes even morepronounced in caches with longer cache lines. In bothprograms, simple consecutive packing performs the bestafter locality grouping, and the combination of localitygrouping and consecutive packing yields the lowest missrate.3 Compiler Support for Dynamic Data PackingRun-time data transformations, dynamic data packingin particular, involve redirecting memory accesses toeach transformed data structure. Such run-time changescomplicate program transformations and induce over-head during the execution. This section presents com-

piler strategies to automate data transformations andminimize their run-time overhead.3.1 Packing and Packing OptimizationsThe core mechanism for supporting packing is a run-time data map, which maps from the old location be-fore data packing to the new location after data pack-ing. Each access to a transformed array is augmentedwith the indirection of the corresponding run-time map.Thus the correctness of packing is ensured regardlessthe location and the frequency of packing. Some exist-ing language features such as sequence and storage as-sociation in Fortran prevent a compiler from accuratelydetecting all accesses to a transformed array. However,this problem can be safely solved in a combination ofcompile, link and run-time checks described in [7].Although the compiler support can guarantee thecorrectness of packing, it needs additional informationto decide on the pro�tability of packing. Our compilercurrently relies on a one-line user directive to specifywhether packing should be applied, when and wherepacking should be carried out and which access sequenceshould be used to direct packing. The packing directiveprovides users with full power of controlling data pack-ing, yet relieves them from any program transformationwork. At the end of this section, we will show how thepro�tability analysis of packing can be automated with-out relying on any user-supplied directive.The following example illustrates our compiler sup-port for data packing. The example has two compu-tation loops: the �rst loop calculates cumulative forceson each object, and the second loop calculates the newlocation of each object as a result of those forces. Thepacking directive speci�es that packing is to be appliedbefore the �rst loop.Packing Directive: apply packing using interactionsfor each pair (i,j) in interactionscalculate_force( force[i], force[j] )end forfor each object iupdate_location( location[i], force[i] )end forThe straightforward (unoptimized) packing produces thefollowing code. The call to apply packing analyzes theinteractions array, packs force array and generates therun-time data map, inter$map. After packing, indirec-tions are added in both loops.apply_packing( interactions[*], force[*], inter$map[*])for each pair (i,j) in the interaction arraycalculate_force( force[ inter$map[i] ],force[ inter$map[j] ] )end forfor each object iupdate_location(location[i], force[ inter$map[i] ])end for
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The cost of data packing includes both data reor-ganization during packing and data redirection afterpacking. The �rst cost can be balanced by adjustingfrequency of packing. Thus the cost of reorganizingdata is amortized over multiple computation iterations.A compiler can make sure that this cost does not out-weigh any performance gain by either applying packinginfrequently or making it adjustable at run time. Aswill be shown in Section 5, data reorganization incursnegligible overhead in practice.Data indirection, on the other hand, can be very ex-pensive, because its cost is incurred on every access toa transformed array. The indirection overhead comesfrom two sources: the instruction overhead of indirec-tion and the references to run-time data maps. The in-direction instructions have a direct impact on the num-ber of memory loads but the overhead becomes less sig-ni�cant in deeper memory hierarchy levels. However,the cost of run-time data maps has an consistent e�ecton all levels of cache, although this cost is likely to besmall in cases where the same data map is shared bymany data arrays. In addition, as we show next, thecost of indirection can be almost entirely eliminated bytwo compiler optimizations, pointer update and arrayalignment.Pointer update modi�es all references to transformeddata arrays so that the indirections are no longer nec-essary. In the above example, this means that the ref-erences in interactions array are changed so that theindirections in the �rst loop can be completely elimi-nated. To implement this transformation correctly, acompiler must (1) make sure that every indirection ar-ray is associated with only one run-time data map and(2) when packing multiple times, maintain two mapsfor each run-time data map, one maps from the originallayout and the other maps from the most recent datalayout.The indirections in the second loop can be eliminatedby array alignment, which reorganizes the location ar-ray in the same way as the force array, that is, alignsthe i's element of both arrays. Two requirements arenecessary for this optimization to be legal: (1) the loopiterations can be arbitrarily reordered, and (2) the rangeof loop iterations is identical to the range of re-mappeddata. The second optimization, strictly speaking, ismore than a data transformation because it reordersloop iterations.The following is the example code after applyingpointer update and array alignment. The update maparray is added to map data from the last layout to thecurrent layout. After the two transformations, all in-directions through the inter$map array have been re-moved.apply_packing( interactions[*], force[*],inter$map[*], update_map[*] )

update_indirection_array( interactions[*],update_map[*] )transform_data_array(location[*], update_map[*])for each pair (i,j) in interactionscalculate_force( force[i], force[j] )end forfor each object iupdate_location( location[i], force[i] )end forThe overhead of array alignment can be further re-duced by avoiding packing those data arrays that arenot live at the point of data packing. In the aboveexample, if the location array does not carry any livevalues at the point of packing, then the third call, whichtransforms location array, can be removed.3.2 Compiler ImplementationWe have implemented the compiler support for pack-ing in the D Compiler System at Rice University. Thecompiler performs whole program compilation given allsource �les of an input program. It uses a powerfulvalue-numbering package to handle symbolic variablesand expressions inside each subroutine and parameterpassing between subroutines. It has a standard set ofloop and dependence analysis, data ow analysis andinterprocedural analysis.The �rst step of the compiler support is to �nd allpossible packing candidates, and it does so by �rst dis-covering and then partitioning primitive packing groups.Each primitive packing group contains two sets of ar-rays: the set of access arrays, which hold the indirectaccess sequence, and the set of data arrays, which areeither indirectly accessed through the �rst set of ar-rays or alignable with some arrays that are indirectlyaccessed. Given a program, the compiler identi�es allpremitive packing groups as follows. For each indirectdata access in the program, the compiler puts the ac-cess array and the data array into a new primitive pack-ing group. For each loop that can be freely reordered,the compiler puts all accessed data arrays into a newprimitive packing group. Then the compiler partitionsall primitive packing groups into disjoint packing par-titions. Two primitive packing groups are disjoint ifthey don't share any array between their access arraysets and between their data array sets. A union-�ndalgorithm can e�ciently perform the paritioning.After partitioning, each disjoint packing partitionis a possible packing candidate. The two optimiza-tions can be readily applied to any packing candidate,should it become the choice of packing. Pointer updatechanges all arrays in the access array set; array align-ment transforms all arrays in the data array set andreorders the loops that access aligned data arrays. Forall other accesses that are not covered by the above two
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optimizations, the compiler inserts indirections throughrun-time maps.The current implementation of packing has severallimitations. It does not work on programs where theindirect access sequence is incrementally computed be-cause the one-line directive requires the existence of afull access sequence. A possible extension would be toallow user to specify a region of computation in which toapply packing so that the compiler can record the fullaccess sequence at run time. The other restriction ofthe current implementation is due to conservative han-dling of array parameter passing. For each subroutinewith array parameters, we do not allow two di�erentarray layouts to be passed to the same formal parame-ter. This problem can be solved by propagating arraylayout information in a way similar to interproceduralconstant propagation or data type analysis and thencloning the subroutine for each reachable array layout.In the programs we have encountered, however, thereis no need for such cloning. The implementation alsoinherits limitations from our compiler infrastructure: itonly compiles programs written in Fortran 77 and con-sequently it does not handle recursion. However, recur-sion should present no fundamental obstacles to thesemethods.3.3 Extensions to Fully Automatic PackingAlthough the one-line packing directive is convenientwhen a user knows how to apply packing, the monda-tory requirement for such a directive is not desirable insituations when a user cannot make an accurate judge-ment on the pro�tability of packing. This section dis-cusses several straightforward extentions which can fullyautomate the pro�tability analysis, speci�cally, exten-sions that decide whether, where, and when to applypacking.With the algorithm described in the previous sec-tion, a compiler can identify all packing candidates. Foreach candidate, the compiler can record the access se-quence at run time and determine whether it is non-contiguous and, if so, whether packing can improve itsspatial reuse. Such decisions depend on program inputsand must be made with some sort of run-time feedbacksystem. In addition, the same data may be indirectlyaccessed by more than one access sequence, each maydemand a di�erent reorganization scheme. Again, run-time analysis is necessary to pick out the best packingchoice.Once the compiler chooses a packing candidate, itcan place packing calls right before the place where theindirect data accesses begin. The placement requires�nding the right loop level under which the whole indi-rect access sequence is iterated.The frequency of packing can also be automaticallydetermined. One e�cient scheme is to monitor the av-

erage data distance in an indirect access sequence andonly invoke packing routines when adjacent computa-tions access data that are too far apart in memory.Since the overhead of data reorganization can be eas-ily monitored at run-time, the frequency of packing canbe automatically controlled to balance the cost of datareorganization.4 Optimal Data RegroupingA dynamic application may have multiple computa-tion phases each of which computes on a di�erent butoverlapping set of data. Data regrouping separates thedata of di�erent phases, computes the optimal groupingscheme and places data within each group consecutivelyin memory. The regrouping algorithm and a more de-tailed discussion can be found in [11]. In summary, opti-mal regrouping is equivalent to a set-partitioning prob-lem and it can be computed in O(min(max(2S ; N ); N �logN �S), where N is the number of arrays and S is thenumber of computation phases. For dynamic applica-tions, optimal regrouping achieves full cache utilizationand maximal spatial reuse. The regrouping algorithmalso bene�ts regular applications because it guaranteesfull cache utilization and minimal working sets in cacheand TLB. Existing compiler techniques are capable ofimplementing the analysis and transformation of dataregrouping. In particular, bounded regular sections [14]can be used to analyze computation phases and to directdata transformations. It has been successfully appliedfor similar purposes in other contexts.5 Evaluation5.1 Experimental DesignTable 2 lists the four applications we used for the study,along with their description, source and size. We chosethree scienti�c simulation applications from moleculardynamics, structural mechanics and hydrodynamics. De-spite the di�erence in their physical model and compu-tation, they have similar dynamic data access patternsin which objects interact with their neighbors. Moldynand mesh are well-known benchmarks. We used a largeinput data set for moldyn with random initialization.Mesh has a user-supplied input set. Magi is a full,real-world application consisting of almost 10,000 linesof Fortran 90 code. In addition to the three simulationprograms, we included a sparse-matrix benchmark toshow the e�ect of packing on irregular data accesses insuch applications.The test programs are measured on a single MIPSR10K processor of an SGI Origin2000. The R10K pro-vides hardware counters that measure cache misses andother hardware events with a very small run-time over-head. The processor has two caches: the �rst-level (L1)
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name description source language No. linesmoldyn molecule dynamics simulation Chaos group f77 660mesh structural simulation Chaos group C 932magi particle hydrodynamics DoD f90 9339NAS-CG sparse matrix-vector multiplication NAS/NPB Serial v2.3 f77 1141application input size source of input exe. timemoldyn 256K particles, 27.4M interactions, 1 iteration random initialization 53.2 secmesh 9.4K nodes, 60K edges, 20 iterations provided by the Chaos group 8.14 secmagi 28K particles, 253 cycles provided by DoD 885 secNAS-CG 14K non-zero entries, 15 iterations NASA/NPB Serial 2.3, Class A 48.3 secapplication optimizations applied program components measuredlocality grouping regrouping packingmoldyn + V V subroutine Compute Force()mesh V + V full applicationmagi + V V full applicationNAS-CG n/a + V/+ full applicationTable 2: Applications, Input Sizes, and Transformations Appliedcache is 32KB in size and uses 32-byte cache lines andthe second-level (L2) cache is 4MB with 128-byte cachelines. Both caches are two-way set associative. TheR10K achieves good latency hiding as a result of dy-namic, out-of-order instruction issuing and compiler-directed prefetching. All applications are compiled withthe highest optimization ag and prefetching turned on.The second table in Table 2 gives the input size foreach application, the sources of the data inputs, andthe execution time before applying optimizations. Theworking set is signi�cantly larger than the L1 cache forall applications. Mesh, Magi and NAS � CG are alittle bit larger than L2. Moldyn has the largest datainput and its data size is signi�cantly greater than thesize of L2.We applied the three transformations in the follow-ing order: locality grouping, optimal data regrouping,dynamic data packing and packing optimizations. Sincethe access sequence is already transformed by localitygrouping, we use consecutive packing for all cases be-cause of the observation made in Section 2.2. (Onetest case, NAS �CG, accesses each element only once,therefore consecutive packing is optimal.) For each trans-formation applied, we measure its impact on executiontime and the number of cache and TLB misses.5.2 Transformations AppliedThe third table in Table 2 lists, for each application,the optimizations applied and the program componentsmeasured. Each of the base programs came with oneor more of the three optimizations done by hand. Suchcases are labeled with a `+' sign in the table. The `V'

signs indicate the optimizations we added, except inthe case of NAS-CG. The base program of NAS �CGcame with data packing already done by hand, but weremoved it for the purpose of demonstrating the e�ectof packing. We do not consider hand-applied packingpractical because of the complexity of transforming tensof arrays repeatedly at run-time for a large program.Locality grouping and data regrouping were insertedby hand. Data packing of moldyn and CG was per-formed automatically by our compiler given a one-linedirective of packing. The same compiler packing algo-rithm was applied to mesh by hand because our com-piler infrastructure cannot yet compile C. Unlike otherprograms, Magi is written in Fortran90 and computesthe interaction list incrementally. We slightly modi�edthe source to let it run through the Fortran77 front-endand inserted a loop to collect the overall data accesssequence. Then our compiler successfully applied basepacking transformation on the whole program. The ap-plication of the two compiler optimizations were semi-automatic: we inserted a 3-line loop to perform pointerupdate; and we annotated a few dependence-free loopswhich otherwise would not be recognized by the com-piler due to the presence of procedural calls inside thethem. All other transformations are performed by thecompiler. The optimized packing reorganizes a total of45 arrays in magi.We refer to the original program as the base pro-gram and the transformed version with optimizationslabeled `V' as the optimized program. For NAS-CG,the base program refers to the version with no packing.Dynamic data packing is applied only once in each ap-
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plication except magi where data are repacked every 75iterations.5.3 E�ect of TransformationsThe four graphs of Figure 5 show the e�ect of the threetransformations. The �rst plots the e�ect of optimiza-tions on the execution speed. The �rst bar of each ap-plication is the normalized performance (normalized to1) of the base version. The other bars show the perfor-mance after applying each transformation. Since not alltransformations are necessary, an application may nothave all three bars. The second bar, if shown, showsthe speedup of locality grouping. The third and fourthbars show the speedup due to data regrouping and datapacking. The other three graphs are organized in thesame way, except that they are showing the reductionon the number of L1, L2 and TLB misses. The graphsinclude the miss rate of the base program, but the re-duction is on the total number of misses, not on themiss rate.E�ect of Locality Grouping and Data RegroupingLocality grouping eliminates over half of L1 and L2misses in mesh and improves performance by 20%. Inaddition, locality grouping avails the program for datapacking, which further reduces L1 misses by 35%. With-out the locality grouping step, however, consecutivepacking not only results in no improvement but also in-curs 5% more L1 misses and 54% more L2 misses. Thiscon�rms the observation from our simulation study thatlocality grouping is critical for the later data optimiza-tion to be e�ective.Data regrouping signi�cantly improves moldyn andmagi. Magi has multiple computation phases, optimalregrouping selectively groups 26 arrays into 6 arrays inorder to achieve full cache utilization and maximal spa-tial reuse. As a result, the execution time is improvedby a factor of 1.32 and cache misses are reduced by38% for L1, 17% for L2, and 47% for TLB. By con-trast, merging all 26 arrays improves performance byonly 12%, reduces L1 misses by 35%, and as a side ef-fect, increases L2 misses by 32%. Data regrouping iseven more e�ective on moldyn, eliminating 70% of L1and L2 misses and almost doubling the execution speed.E�ect of Dynamic Data PackingData packing is applied to all four applications afterlocality grouping and data regrouping. It further im-proves performance in all cases. For moldyn, packingimproves performance by a factor of 1.6 and reduces L2misses by 21% and TLB misses by 88% over the versionafter data regrouping. For NAS � CG, the speedup is4.36 and the amount of reduction is 44% for L1, 85%for L2 and over 97% for TLB.

For mesh after locality grouping, packing slightlyimproves performance and reduces misses by additional3% for L1 and 35% for L2. The main reason for themodest improvement on L1 is that the data granularity(24 bytes) is close to the size of L1 cache lines (32 bytes),leaving little room for additional spatial reuse. In addi-tion, packing is directed by the traversal of edges, whichdoes not work as well during the traversal of faces. Thenumber of L1 misses is reduced by over 6% during edgetraversals, but the reduction is less than 1% during facetraversals. Since the input data set almost �ts in L2,the signi�cant reduction in L2 misses does not producea visible e�ect on the execution time.When applied after data regrouping on magi, pack-ing speeds up the computation by another 70 seconds(12%) and reduces L1 misses by 33% and TLB missesby 55%. Because of the relatively small input data set,L2 and TLB misses are not a dominant factor in per-formance. As a result, the speed improvement is not aspronounced as the reduction in these misses.Overall, packing achieves a signi�cant reduction inthe number of cache misses especially for L2 and TLB,where opportunities for spatial reuse are abundant. Thereduction in L2 misses ranges from 21% to 84% for allfour applications; the reduction in TLB misses rangesfrom 55% to 97% except for mesh, whose working set�ts in TLB.Packing Overhead and the E�ect of Compiler Optimiza-tionsThe cost of dynamic data packing comes from the over-head of data reorganization and the cost of indirectmemory accesses. The time spent in packing has a neg-ligible e�ect on performance in all three applications wemeasured. Packing time is 13% of the time of one com-putation iteration in moldyn, and 5.4% in mesh. Whenpacking is applied for every 20 iterations, the cost is lessthan 0.7% in moldyn and 0.3% in mesh. Magi packsdata every 75 iterations and spends less than 0.15% oftime on packing routines.The cost of data indirection after packing can bemostly eliminated by two compiler optimizations de-scribed in Section 3.1. Figure 6 shows the e�ect of thesetwo compiler optimizations on all four applications wetested.The upper-left graph shows that, for moldyn, theindirections (that can be optimized away) account for10% of memory loads, 22% of L1 misses, 19% of L2misses and 37% of TLB misses. After the eliminationof the indirections and the references to the run-timemap, execution time was reduced by 27%, a speedup of1.37. The improvement in mesh is even larger. In thiscase, the indirections account for 87% of the loads frommemory, in part because mesh is written in C and the
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with optimizationsFigure 6: E�ect of Compiler Optimizationscompiler does not do a good job of optimizing array ref-erences. Since the excessive number of memory loadsdominates execution time, the compiler optimizationsachieve a similar reduction (82%) in execution time.The number of loads is increased in magi after the op-timizations because array alignment transforms 19 morearrays than the base packing, and not all indirections tothese arrays can be eliminated. Despite the increasednumber of memory loads, the cache misses and TLBmisses are reduced by 10% to 33%, and the overall speed

is improved by 8%. For NAS � CG, the compiler rec-ognizes that matrix entries are accessed in stride-onefashion and consequently, the compiler replaces the in-direction accesses with direct stride-one iteration of thereorganized data array. The transformed matrix-vectormultiply kernel has the equally e�cient data access asthe original hand-coded version. As a result, the num-ber of loads and cache misses is reduced by 23% to 50%.The TLB working set �ts in machine's TLB bu�er afterthe optimizations, removing 97% of TLB misses. Theexecution time is reduced by 60%, a speedup of 2.47.6 Related WorkTo our knowledge, this work is the �rst study on thecombination of run-time computation and data trans-formation to improve cache performance of irregularand dynamic applications. It is also the �rst to pro-vide comprehensive compiler support for run-time datatransformation.Our work is close in spirit to the run-time paralleliza-tion work on dynamic applications. The Chaos group,led by Saltz[10], partitions computation and reorganizesdata at run time in order to balance the computationalload across processors and reduce communication in aparallel execution. Once computation is partitioned,the data accessed by each processor are grouped andplaced in its local memory. However, the parallelizationwork did not include a general restructuring method tosubsequently improve cache performance.The Chaos group is also the �rst to use run-time
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computation transformation to improve cache perfor-mance. Das et al. used a reverse Cuthill Mcgee order-ing to improve locality in a multi-grid computation[9].Another method, domain partitioning, has been used toblock computation for cache by Tomkoand Abraham[21].However, they found no overall improvement by block-ing. Building on our work reported in this paper, Mellor-Crummey et al.[18] have employed space-�tting curveordering to block dynamic computation. Domain par-titioning and space-curve ordering are more powerfulthan locality grouping because they can block computa-tion for a speci�c cache size, but they are also more ex-pansive than locality grouping. In fact, locality group-ing works without looking at domain data, i.e. coordi-nates of particles. For applications such as mesh, lo-cality grouping is able to reduce miss rate to as low as0.37%, leaving little room for further improvement withmore expansive methods. An idea that is similar to lo-cality grouping is used by Han and Tseng to improveparallel e�ciency on a shared-memorymachine[13]. Theyused owner-compute rule and assigned all updates of aparticle to a single thread to avoid the cost of reductionamong parallel processors.The compiler support for dynamic data packing over-comes a serious limitationof all previous run-timemeth-ods, that is, their reliance on the knowledge of programstructure and data domain. By comparison, our com-piler exploits and optimizes data layout transformationwithout relying on domain knowledge of either the pro-gram or data. There has been recent work on hardware-based data reorganization by Carter at el.[6]. Their ap-proach can be potentially more e�cient because theyuse an additional processor to remap memory. How-ever, compiler analysis similar to ours is necessary toe�ectively control such hardware features.The goal of improving data reuse has been pursuedfor regular applications by loop and data transforma-tions such as cache blocking[5, 22], memory order looppermutation[1, 12, 17], and data reshaping[8, 3, 15].However, static loop and data transformations devel-oped for regular applications cannot optimize dynamiccomputations where the data access pattern remainsunknown until run time and changes during the com-putation.Various static data placement schemes have beenused to avoid cache conicts and to improve spatialreuse. Thabit[20] studied data packing to reduce con-icts in cache. He used static program analysis to con-struct a proximity matrix and packed simultaneouslyused data into non-conicting cache blocks. He provedthat �nding the optimal packing using a proximity ma-trix is NP-complete. Al-Furaih and Ranka modeledirregular data as graph nodes and used edges to linkthe data that are simultaneously accessed[2]. In addi-tion, for programs with high-level data structures and

dynamic memory allocation, pro�ling information hasbeen used to analyze the order of access to both codeand data. Seidl and Zorn[19] clustered frequently ref-erenced objects, and Calder et al.[4] reordered objectsbased on their temporal relations.Our work di�ers from such static data layout trans-formations in that we apply data packing at run time.E�ciently exploiting spatial reuse at run time is criti-cal for applications in which data access order changesduring the execution. For example, in a sparse-matrixcode, the matrix may be iterated �rst by rows and thenby columns. In scienti�c simulations, the computationorder changes as the physical model evolves. In thesecases, a �xed static data layout is not likely to performwell throughout the computation. Another di�erence isthat our packing method does not explicitly use prox-imity or temporal relations of data. It is not yet estab-lished whether the data reordering methods based onproximity matrices or temporal relation graphs are coste�ective at run time. The cost of constructing a com-plete proximity relationship can be prohibitively high,given a large number of data elements involved. Thethird di�erence is the granularity of the analysis andtransformation. Pro�ling-based methods have the �xedgranularity, i.e. the unit of memory allocation. Thegranularity of our analysis and transformation is indi-vidual array elements. In addition, our data transfor-mation aligns and merges array elements that are at-tributes of the same particle.7 ContributionsWe have presented and evaluated three novel programand data transformations for improving the memory hi-erarchy performance of dynamic applications. The prin-cipal contribution of this paper is a demonstration ofhow compiler-generated computation and data reorga-nization at run time can improve temporal and spatialreuse. We examined two run-time transformations forthis purpose.� Locality grouping brings together all the interac-tions involving the same data element. It is inex-pensive, yet very powerful, eliminating over 50%of cache misses in a full application. Furthermore,locality grouping is vital for the subsequent datatransformation to be e�ective.� Dynamic data packing improves spatial reuse byreorganizing the data structures so that data el-ements that are used together are close togetherin memory. Since optimal data packing is NP-complete, we have explored three di�erent heuristic-based packing algorithms and found that simpleconsecutive packing performs extremely well whencarried out after locality grouping. For all appli-
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